2021, Article / Letter to editor (Journal of Manual & Manipulative Therapy, vol. 29, iss. 1, (2021), pp. 40-50)Background: In infants with indications of upper cervical dysfunction, the Flexion-Rotation-Test and Lateral-Flexion-Test are used to indicate reduced upper cervical range-of-motion (ROM). In infants, the inter-rater reliability of these tests is unknown. Objective: To assess the inter-rater reliability of subjectively and objectively measured ROM by using the Flexion-Rotation-Test and Lateral-Flexion-Test. Methods: 36 infants (<6 months) and three manual therapists participated in this cross-sectional observational study. Pairs of two manual therapists independently assessed infants' upper cervical ROM using the Flexion-Rotation-Test and Lateral-Flexion-Test, blinded for each other's outcomes. Two inertial motion sensors objectively measured cervical ROM. Inter-rater reliability was determined between each pair of manual therapists. For subjective outcomes, Cohen's kappa (ĸ) and the proportion of agreement (Pra) were calculated. For objectively measured ROM, Bland Altman plots were conducted and Limits of Agreement and Intraclass Correlation Coefficients (ICC) were calculated. Results: The inter-rater reliability of the Flexion-Rotation-Test and Lateral-Flexion-Test for subjective (ĸ: 0.077-0.727; Pra: 0.46-0.86) and objective outcomes (ICC: 0.019-0.496) varied between pairs of manual therapists. Conclusion: Assessed ROM largely depends on the performance of the assessment and its interpretation by manual therapists, leading to high variation in outcomes. Therefore, the Flexion-Rotation-Test and Lateral-Flexion-Test cannot be used solely as a reliable outcome measure in clinical practice and research context.
2020, Article / Letter to editor (Foot and Ankle Surgery, vol. 26, iss. 7, (2020), pp. 755-762)INTRODUCTION: This study investigated the effect of operative claw toe correction with release of the metatarsophalangeal (MTP) joint, repositioning of the plantar fat pad and resection of the proximal interphalangeal joint on foot kinematics, plantar pressure distribution and Foot Function Index (FFI). METHODS: Prospective experimental study with pretest-posttest design. The plantar pressure, 3D foot kinematics and the FFI of 15 patients with symptomatic claw toes were measured three months before and 12months after surgery. Mean pressure, peak pressure and pressure time integral per sensor and various foot angles were calculated for the pre- and posttest and compared to a control group (N=15). RESULTS: Claw toe patients have increased pressure under the distal part of the metatarsal head and less pressure under the proximal part of the metatarsal heads compared to healthy controls. After surgery, there was a redistribution of pressure, resulting in a significant decrease of pressure under the distal part and an increase under the proximal part of the metatarsal head, providing a more equal plantar pressure distribution. Except for some small areas under the forefoot, heel and toes, there were no significant differences in pressure distribution between the operated feet and controls. Small, but significant differences between the pre- and postoperative condition were found for the lateral arch angle, calcaneus/malleolus supination and tibio-talar flexion. The score on the FFI improved statistically significant. DISCUSSION: These findings imply that the present operative procedure results in a more equal distribution of the plantar pressure under the forefoot and decrease of pain and offers successful treatment of metatarsalgia based on claw toe deformity.
2017, Article / Letter to editor (Knee Surgery, Sports Traumatology, Arthroscopy, vol. 25, iss. 9, (2017), pp. 2904-2913)PURPOSE: In this prospective study, the changes in kinetics and kinematics of gait and clinical outcomes after a varus osteotomy (tibial, femoral or double osteotomy) in patients with osteoarthritis (OA) of the knee and a valgus leg alignment were analysed and compared to healthy subjects. METHODS: Twelve patients and ten healthy controls were included. Both kinetics and kinematics of gait and clinical and radiographic outcomes were evaluated. RESULTS: The knee adduction moment increased significantly postoperatively (p < 0.05) and almost similar to the control group. Patients showed less knee and hip flexion/extension motion and moment during gait pre- and postoperatively compared to the controls. A significant improvement was found in WOMAC [80.8 (SD 16.1), p = 0.000], KOS [74.9 (SD 14.7), p = 0.018], OKS [21.2 (SD 7.5), p = 0.000] and VAS-pain [32.9 (SD 20.9), p = 0.003] in all patients irrespective of the osteotomy technique used. The radiographic measurements showed a mean hip knee ankle (HKA) angle correction of 10.4° (95 % CI 6.4°-14.4°). CONCLUSION: In patients with knee OA combined with a valgus leg alignment, the varus-producing osteotomy is a successful treatment. Postoperatively, the patients showed kinetics and kinematics of gait similar as that of a healthy control group. A significant increase in the knee adduction moment during stance phase was found, which was related to the degree of correction. The HKA angle towards zero degrees caused a medial shift in the dynamic knee loading. The medial shift will optimally restore cartilage loading forces and knee ligament balance and reduces progression of OA or the risk of OA. A significant improvement in all clinical outcomes was also found. LEVEL OF EVIDENCE: III.
2016, Article / Letter to editor (Gait & Posture, vol. 43, (2016), pp. 93-95)Walking speed is one of the best measures of overall walking capacity. In plantar pressure measurements, walking speed can be assessed using contact time, but it is only moderately correlated with walking speed. The center of pressure might be of more value to indicate walking speed since walking speed alters foot loading. Therefore, the purpose of this study is to assess walking speed using the velocity of the center of pressure (VCOP). Thirty-three subjects walked over a Footscan pressure plate at three speed conditions; slow, preferred, and fast. Walking speed was measured by a motion analysis system. (Multiple) linear regression analysis was used to indicate the relation between walking speed and independent variables derived from the pressure plate such as mean VCOP and stance time for all walking conditions separately and together. The mean VCOP had the highest correlation coefficient value with walking speed for all walking conditions combined (0.94) and for the preferred walking condition (0.80). The multiple regression analysis, based on a number of additional parameters, revealed a small to modest increase in the performance of predicting walking speed (r=0.98 for combined and r=0.93 for preferred). The mean VCOP was the best predictor for walking speed when using a plantar pressure plate. The mean VCOP predicts the walking speed with a 95% accuracy of 0.20m/s when healthy subjects walk at their preferred walking speed.
2014, Article / Letter to editor (Gait & Posture, vol. 39, iss. 2, (2014), pp. 773-777)INTRODUCTION: Based on the windlass mechanism theory of Hicks, the medial longitudinal arch (MLA) flattens during weight bearing. Simultaneously, foot lengthening is expected. However, changes in foot length during gait and the influence of walking speed has not been investigated yet. METHODS: The foot length and MLA angle of 34 healthy subjects (18 males, 16 females) at 3 velocities (preferred, low (preferred -0.4 m/s) and fast (preferred +0.4 m/s) speed were investigated with a 3D motion analysis system (VICON(®)). The MLA angle was calculated as the angle between the second metatarsal head, the navicular tuberculum and the heel in the local sagittal plane. Foot length was calculated as the distance between the marker at the heel and the 2nd metatarsal head. A General Linear Model for repeated measures was used to indicate significant differences in MLA angle and foot length between different walking speeds. RESULTS: The foot lengthened during the weight acceptance phase of gait and shortened during propulsion. With increased walking speed, the foot elongated less after heel strike and shortened more during push off. The MLA angle and foot length curve were similar, except between 50% and 80% of the stance phase in which the MLA increases whereas the foot length showed a slight decrease. CONCLUSION: Foot length seems to represent the Hicks mechanism in the foot and the ability of the foot to bear weight. At higher speeds, the foot becomes relatively stiffer, presumably to act as a lever arm to provide extra propulsion.
2013, Article / Letter to editor (Clinical Biomechanics, vol. 28, iss. 3, (2013), pp. 350-356)BACKGROUND: Plantar pressure is widely used to evaluate foot complaints. However, most plantar pressure studies focus on the symptomatic foot with foot deformities. The purposes of this study were to investigate subjects without clear foot deformities and to identify differences in plantar pressure pattern between subjects with and without forefoot pain. The second aim was to discriminate between subjects with and without forefoot pain based on plantar pressure measurements using neural networks. METHODS: In total, 297 subjects without foot deformities of whom almost 50% had forefoot pain walked barefoot over a pressure plate. Foot complaints and subject characteristics were assessed with a questionnaire and a clinical evaluation. Plantar pressure was analyzed using a recently developed method, which produced pressure images of the time integral, peak pressure, mean pressure, time of activation and deactivation, and total contact time per pixel. After pre-processing the pressure images with principal component analysis, a forward selection procedure with neural networks was used to classify forefoot pain. FINDINGS: The pressure-time integral and mean pressure were significantly larger under the metatarsals II and III for subjects with forefoot pain. A neural network with 14 input parameters correctly classified forefoot pain in 70.4% of the test feet. INTERPRETATION: The differences in plantar pressure parameters between subjects with and without forefoot pain were small. The reasonable performance of forefoot pain classification by neural networks suggests that forefoot pain is related more to the distribution of the pressure under the foot than to the absolute values of the pressure at fixed locations.
2013, Article / Letter to editor (PLoS One, vol. 8, iss. 2, (2013), pp. e57209)In contrast to western countries, foot complaints are rare in Africa. This is remarkable, as many African adults walk many hours each day, often barefoot or with worn-out shoes. The reason why Africans can withstand such loading without developing foot complaints might be related to the way the foot is loaded. Therefore, static foot geometry and dynamic plantar pressure distribution of 77 adults from Malawi were compared to 77 adults from the Netherlands. None of the subjects had a history of foot complaints. The plantar pressure pattern as well as the Arch Index (AI) and the trajectory of the center of pressure during the stance phase were calculated and compared between both groups. Standardized pictures were taken from the feet to assess the height of the Medial Longitudinal Arch (MLA). We found that Malawian adults: (1) loaded the midfoot for a longer and the forefoot for a shorter period during roll off, (2) had significantly lower plantar pressures under the heel and a part of the forefoot, and (3) had a larger AI and a lower MLA compared to the Dutch. These findings demonstrate that differences in static foot geometry, foot loading, and roll off technique exist between the two groups. The advantage of the foot loading pattern as shown by the Malawian group is that the plantar pressure is distributed more equally over the foot. This might prevent foot complaints.
2012, Article / Letter to editor (J Am Podiatr Med Assoc, vol. 102, iss. 1, (2012), pp. 18-24)BACKGROUND: Metatarsal pads are frequently prescribed for patients with metatarsalgia to reduce pain under the distal metatarsal heads. Several studies showed reduced pain and reduced plantar pressure just distal to the metatarsal pad. However, only part of the pain reduction could be explained by the decrease in plantar pressure under the forefoot. Therefore, an alternative hypothesis is proposed that pain relief is related to a widening of the foot and the creation of extra space between the metatarsal heads. This study focused on the effect of a metatarsal pad on the geometry of the forefoot by studying forefoot width and the height of the second metatarsal head. METHODS: Using a motion analysis system, 16 primary metatarsalgia feet and 12 control feet were measured when walking with and without a metatarsal pad. RESULTS: A significant mean increase of 0.60 mm in forefoot width during the stance phase was found when a metatarsal pad was worn. During midstance, the mean increase in forefoot width was 0.74 mm. In addition, walking with a metatarsal pad revealed an increase in the height of the second metatarsal head (mean, 0.62 mm). No differences were found between patients and controls. CONCLUSIONS: The combination of increased forefoot width and the height of the second metatarsal head produced by the metatarsal pad results in an increase in space between the metatarsal heads. This extra space could play a role in pain reduction produced by a metatarsal pad.
2011, Article / Letter to editor (Foot & Ankle International, vol. 32, iss. 1, (2011), pp. 57-65)BACKGROUND: Although many patients with foot complaints receive customized insoles, the choice for an insole design can vary largely among foot experts. To investigate the variety of insole designs used in daily practice, the insole design and its effect on plantar pressure distribution were investigated in a large group of patients. MATERIALS AND METHODS: Mean, peak, and pressure-time-integral per sensor for 204 subjects with common foot complaints for walking with and without insoles was measured with the footscan® insole system (RSscan International). Each insole was scanned twice (precision3D), after which the insole height along the longitudinal and transversal cross section was calculated. Subjects were assigned to subgroups based on complaint and medial arch height. Data were analyzed for the total group and for the separate subgroups (forefoot or heel pain group and flat, normal or high medial arch group). RESULTS: The mean pressure significantly decreased under the metatarsal heads II-V and the calcaneus and significantly increased under the metatarsal bones and the lateral foot (p<0.0045) due to the insoles. However, similar redistribution patterns were found for the different foot complaints and arch heights. There was a slight difference in insole design between the subgroups; the heel cup was significantly higher and the midfoot support lower for the heel pain group compared to the forefoot pain group. The midfoot support was lowest in the flat arch group compared to the high and normal arch group (p<0.05). CONCLUSION: Although the insole shape was specific for the kind of foot complaint and arch height, the differences in shape were very small and the plantar pressure redistribution was similar for all groups. CLINICAL RELEVANCE: This study indicates that it might be sufficient to create basic insoles for particular patient groups.
2010, Article / Letter to editor (Gait & Posture, vol. 31, iss. 1, (2010), pp. 140-142)Dynamic plantar pressure images are routinely used in clinical gait assessment, and peak pressure, mean pressure, and pressure-time integral are the most frequently used parameters to summarize these images. Many studies report only one parameter, but other studies report all three. The interdependency of these variables has not been explicitly studied previously. The purpose of this study was to describe the linear relation between these three pressure parameters. 327 subjects walked normally over a pressure plate. Peak pressure, mean pressure and pressure-time integral were calculated for 10 different anatomical areas and, after applying a previously described spatial normalization procedure, these variables were also calculated for each pixel. Mean pressure was highly correlated with peak pressure (r=0.90+/-0.09) and pressure-time integral (r=0.81+/-0.13) for pixels. Peak pressure and pressure-time integral showed a linear correlation coefficient of r=0.78+/-0.21. The pressure parameters of the forefoot pixels were more highly correlated than the heel pixels. The current results have two major implications: (1) plantar pressure parameters (peak, mean, and impulse) can be reasonably compared across studies, even across parameters, and (2) the variables most commonly used to characterize plantar pressures are highly inter-correlated, implying that a smaller set of parameters may more efficiently capture the biomechanical behavior of interest.
2010, Article / Letter to editor (Medicine and Science in Sports and Exercise, vol. 42, iss. 12, (2010), pp. 2264-2272)PURPOSE: The popularity of long-distance walking (LDW) has increased in the last decades. However, the effects of LDW on plantar pressure distribution and foot complaints, in particular, after several days of walking, have not been studied. METHODS: We obtained the plantar pressure data of 62 subjects who had no history of foot complaints and who walked a total distance of 199.8 km for men (n = 30) and 161.5 km for women (n = 32) during four consecutive days. Plantar pressure was measured each day after the finish (posttests I–IV) and compared with the baseline plantar pressure data, which was obtained 1 or 2 d before the march (pretest). Mean, peak, and pressure–time integral per pixel as well as the center of pressure (COP) trajectory of each foot per measurement day were calculated using the normalization method of Keijsers et al. A paired t-test with an adjusted P value was used to detect significant differences between pretest and posttest. RESULTS: Short-term adjustment to LDW resulted in a significant decreased loading on the toes accompanied with an increased loading on the metatarsal head III–V (P < 0.001). At all stages, particularly at later stages, there was significantly more heel loading (P < 0.001). Furthermore, the COP significantly displaced in the posterior direction but not in the mediolateral direction after marching. Contact time increased slightly from 638.5 +/- 24.2 to 675.4 +/- 22.5 ms (P < 0.001). CONCLUSIONS: The increased heel loading and decreased function of the toes found after marching indicate a change of walking pattern with less roll-off. It is argued that these changes reflect the effect of fatigue of the lower leg muscles and to avoid loading of the most vulnerable parts of the foot.
2009, Article / Letter to editor (Journal of Biomechanics, vol. 42, iss. 1, (2009), pp. 87-90)Plantar pressure measurement provides important information about the structure and function of the foot and is a helpful tool to evaluate patients with foot complaints. In general, average and maximum plantar pressure of 6-11 areas under the foot are used to compare groups of subjects. However, masking the foot means a loss of important information about the plantar pressure distribution pattern. Therefore, the purpose of this study was to develop and test a simple method that normalizes the plantar pressure pattern for foot size, foot progression angle, and total plantar pressure. Moreover, scaling the plantar pressure to a standard foot opens the door for more sophisticated analysis techniques such as pattern recognition and machine learning. Twelve subjects walked at preferred and half of the preferred walking speed over a pressure plate. To test the method, subjects walked in a straight line and in an approaching angle of approximately 40 degrees . To calculate the normalized foot, the plantar pressure pattern was rotated over the foot progression angle and normalized for foot size. After normalization, the mean shortest distance between the contour lines of straight walking and walking at an angle had a mean of 0.22 cm (SD: 0.06 cm) for the forefoot and 0.14 cm (SD: 0.06 cm) for the heel. In addition, the contour lines of normalized feet for the various subjects were almost identical. The proposed method appeared to be successful in aligning plantar pressure of various feet without losing information.